Author Affiliations
Abstract
1 Key Laboratory of Optoelectronic Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Expanding the optical communication band is one of the most effective methods of overcoming the nonlinear Shannon capacity limit of single fiber. In this study, GeSn resonance cavity enhanced (RCE) photodetectors (PDs) with an active layer Sn component of 9%10.8% were designed and fabricated on an SOI substrate. The GeSn RCE PDs present a responsivity of 0.49 A/W at 2 μm and a 3-dB bandwidth of approximately 40 GHz at 2 μm. Consequently, Si-based 2 μm band optical communication with a transmission rate of 50 Gbps was demonstrated by using a GeSn RCE detector. This work demonstrates the considerable potential of the Si-based 2 μm band photonics in future high-speed and high-capacity optical communication.
Photonics Research
2024, 12(4): 767

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!